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Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental ��� but also the
frequency-doubled �2�� and tripled �3�� Z-scan responses in Cu2O when the input laser frequency � is tuned
to the two-photon quadrupole polariton resonance. The Z-scan response at � allows us to accurately estimate
the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2�

Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels,
the 3� Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined,
we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-
Einstein condensation in Cu2O.
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Although now commonplace in atomic systems,1,2 Bose-
Einstein condensation �BEC� of excitons in bulk semicon-
ductors has long been a quest, with Cu2O being a primary
candidate historically.3 Exciton polaritons �hereafter called
polaritons� offer an alternative approach and condensation in
two-dimensional �2D� quantum-well structures was recently
reported where multilayer Bragg mirrors confined the optical
components.4–6 However, even under strong cavity confine-
ment, this “nonequilibrium” polariton BEC lasts for much
less than 1 ns, basically due to the short-lived excitonic com-
ponent undergoing efficient dipole transitions in materials
such as GaAs and CdTe.

Decay of the singlet and triplet exciton ground states in
Cu2O is dipole forbidden and they have a relatively small
effective mass. The corresponding critical BEC density is
about 1017 cm−3 at 2 K, which could be readily achievable
using ordinary optical excitation. But exciton BEC turns out
to be elusive due to a nonradiative Auger-type recombination
that becomes more significant at high density and low
temperature.7

The long-lived polaritons in Cu2O may offer an alterna-
tive route to BEC; in fact the existence of long-lived polari-
tons �up to a few nanoseconds� has been firmly established
by coherent quantum beat spectroscopy.8 This much longer
lifetime arises from the above noted dipole-forbidden nature
of Cu2O and radiative decay of polaritons occurs primarily
via a quadrupole transition. These quadrupole polaritons
have been actively researched using resonant two-photon ab-
sorption �TPA�.9–19 Despite preliminary results indicating
suppressed Auger-type loss for polaritons,13,16 no signature
for polariton BEC has been observed in Cu2O. Also, it has
been recently suggested that three-photon excitation17 and
third harmonic generation �THG� �Ref. 20� can affect polar-
iton population dynamics under strong excitation. Consider-
ing possible complications caused by these high-order pro-
cesses, the feasibility of polariton BEC in Cu2O remains an
open question.

In pursuit of this question we have systematically inves-
tigated various nonlinear optical processes such as TPA,
Auger-type recombination and THG under resonant two-

photon excitation ��=1.016 eV� at 2 K using a Z-scan
method. This technique is traditionally utilized to probe the
third-order nonlinearity ��3� by translating a test sample
through the beam waist of a focused Gaussian-laser profile
and measuring the corresponding variation of the transmitted
beam intensity in the far field.21,22 In our experiments a train
of 30-ps laser pulses from an optical parametric amplifier,
pumped by a 10-Hz Nd:YAG laser �355 nm�, was spatially
filtered using a 100 �m pinhole, insuring transmission of
only the TEM00 Gaussian mode �see Fig. 1 inset�. The inci-
dent beam was focused on a d=100-�m-thick �110�-oriented
natural-growth Cu2O crystal in which the relevant selection
rules12,15 were previously confirmed. A lens with a 7.5 cm
focal length was mounted on a computer-controlled stage
that was translated relative to the window of our optical cry-
ostat, thereby changing the input intensity I as a function of
the lens position Z. The change in the far-field image of the
transmitted beam with Z was minimized by using a combi-
nation of collection lenses prior to entering a photomultiplier
tube �PMT�. The output of the PMT was fed into a boxcar
integrator and read out using a data acquisition system �see
Ref. 20 for experimental details�. By extending the standard
Z-scan method �that only monitors the intensity at ��, we
also kept track of the frequency-doubled �2�� and tripled
�3�� Z-scan outputs to probe the polariton and THG re-
sponses using appropriate band-pass filters.

In order to estimate the absolute number of polaritons, it
is essential to precisely determine the TPA coefficient �, ba-
sically arising from Im ��3� at the polariton resonance. Figure
1 plots the normalized � Z-scan trace �dots�, showing non-
linear TPA for 10.4 �J /pulse. Note that only 0.4% of the
incident beam is absorbed at the focus �Z=0�. The solid red
is a theoretical fit, using Eq. �30� of Ref. 21, to the data with
�=0.217 cm /GW and the beam waist of �0=15.1 �m at
Z=0. This �0 is consistent with the Gaussian width �
=0.19 cm of the incident beam through � / f =� /	�0, where
f =7.5 cm and �=1.22 �m. Unlike conventional band-to-
band TPA, at the narrow polariton resonance the effect de-
pends on the spectral width 
� of the incident laser. In our
case of 
��8 meV, we found that �=0.217 cm /GW
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within a 50% uncertainty based on the series of experiments.
We also confirmed that the measured � value persists up to
226 �J /pulse without any evidence for higher order multi-
photon absorption.

With � determined, depletion of the fundamental intensity
I along the beam path z due to TPA can be calculated and is
given by

dI

dz
= − �I2 → I�z;Z,t� =

I0�Z,t�
I0�Z,t��z + 1

, �1�

where I0�Z , t� is the photon flux at the incident sample sur-
face, which is a function of the focusing lens position Z and
given by

I0�Z,t� =
2P�t�

	�2�Z�
→

2P

	�2�Z�
=

2P

	�0
2�1 + Z2/Z0

2�
, �2�

where P�t� is the input pulse power with a 30-ps Gaussian
temporal profile and Z0=	�0

2 /��0.06 cm is the confocal
parameter. Since Z-scan yields the time-averaged data, we
used the time-integrated pulse power P to evaluate I0�Z�. In
Eq. �2�, a factor of 2 is correctly introduced for the averaged
power of the spatial Gaussian beam. Note that, for a given P,
we can continuously vary I0�Z� more than a factor of 400,
simply by translating Z in our Z-scan range �Z��1.2 cm.

Figure 2�a� plots the 2� Z-scan traces �colored dots� un-
der several excitation levels from 10.4 to 226 �J /pulse,
showing polaritons generated by TPA. Note that we also plot
the time-averaged absolute number of polaritons using the
measured � as explained below. As predicted for TPA in a
finite-thickness sample, for a given excitation level, the mea-
sured polariton number increases quadratically with the cor-
responding I0�Z� as we sweep Z.23 However, a striking dip-
like feature develops in the vicinity of Z=0 as we increase
the pulse energy and polariton generation severely saturates
at the focus. As an example Fig. 2�b� plots the polariton
profiles at Z=−0.4 and 0 cm for 122 �J /pulse, which clearly
shows the reduced polariton number at the focus with no
significant spatial broadening. Together with � Z-scan indi-
cating negligible higher order contributions, this implies that
polaritons undergo an Auger-type process at high densities.
To check whether any signal was lost due to the finite aper-
ture of the PMT collector, we probed the polariton spatial
profile in the far field as a function of Z using a gated inten-

sified charge coupled device �CCD� camera and verified that
this mechanism is negligible. �Wide-angle polariton-
polariton scattering is expected to conserve the total polar-
iton number.�

In order to explain 2� Z-scan, we now model the popu-
lation and relaxation dynamics of polaritons. The polariton
generation rate G should match the laser absorption profile;
G�r ;Z�=−�dI /dz� /2=�I2 /2, where a factor of 1/2 accounts
for energy conservation during TPA. The temporal behavior
of the local polariton density n�r ;Z , t� is described by

dn

dt
= G�r;Z� −

n

�
− An2, �3�

where � is the polariton lifetime and A is an Auger
coefficient.7 The analytical solution to Eq. �3� exists and the
time-averaged density n�r ;Z� is given by24

n�r;Z� =
� n�r;Z,t�dt

� dt

=
ln�1 + An0�r;Z���

A�
, �4�

where the initial polariton density is well approximated by
n0�r ;Z�= ��1+4G�r ;Z�A�p

2�1/2−1	 /2A�p with the pulse width
�p=30 ps. While n0 is essentially G�p at low excitation, it
approaches to �G /A�1/2 and is limited by fast Auger-like de-
cay during the 30-ps buildup time when GA�p

2 
1. To obtain
the time-averaged polariton number N�Z� for a given Z, we

FIG. 1. �Color online� Normalized � Z-scan for 10.6 �J /pulse,
superimposed by a theoretical fit with �=0.217 cm /GW. Inset: far-
field image of the laser profile after spatial filtering taken by a gated
intensified CCD camera.

FIG. 2. �Color online� �a� 2� Z-scan traces for various excita-
tions in the range of 10.4–226 �J /pulse, fit by the theoretical
model. �b� Far-field images of the polariton spatial profiles at
Z=−0.4 and 0 cm, and �c� time-integrated PL spectra at Z=−0.2,
−0.1, and 0 cm for 122 �J /pulse.
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numerically integrate n�r ;Z� over the sample dimension, r

N�Z� =� n�r;Z�d3r = 	�2�Z��
0

d

n�z;Z�dz . �5�

Note that N�Z� contains only two independent fit parameters
of � and A since G is accurately determined with �
=0.217 cm /GW. The solid traces in Fig. 2�a� show N�Z�
using a single fit-parameter set of �=2 ns and A=0.55
�10−16 cm3 /ns, showing excellent fits to the series of 2�
Z-scan data. A value �=2 ns is consistent with that obtained
from quantum beat spectroscopy8 and A is about two times
smaller than that reported based on Lyman absorption
spectroscopy.12 Note that the coefficient A for polaritons is
more than ten times smaller than that for thermal excitons
due to their half-light character.7,16

We also confirmed the 2� Z-scan responses based on di-
rect spectroscopic measurements �see Refs. 14–16 for ex-
perimental details�. Figure 2�c� shows the time-integrated
photoluminescence �PL� spectra recorded at Z=−0.2 �red�,
−0.1 �green�, and 0 cm �blue� for 122 �J /pulse. The sharp
lines at 2033 meV arise from the polariton PL and the PL
intensities are consistent with the corresponding 2� Z-scan
shown in Fig. 2�a� for respective values of Z. The broad
asymmetric PL lines at 2020 meV correspond to the major
phonon replica �400� magnified� and essentially reflect the
energy distribution of thermal excitons.25 The Maxwell-
Boltzmann fit to the phonon line yields a time-averaged gas
temperature of 5 K, which is noticeably higher than the lat-
tice temperature. We found that this PL line is barely detect-
able for �Z��0.3 cm but increases in the region of the dip as
Z approaches to the focus—see the change in the phonon-

line intensity with Z in Fig. 2�c�. This is also consistent with
Auger-type decay that produces hot electron-hole pairs sub-
sequently forming thermal excitons.

Since Cu2O exhibits large ��3� responses,20 we performed
3� Z-scan to examine THG arising from Re ��3�. Figure 3�a�
displays 3� Z-scan traces �colored dots� for 79.5, 122, and
226 �J /pulse, resulting from THG of the input laser, as evi-
denced by the inset showing the THG signal at � /3
=406.5 nm. We found that 3� Z-scan responses were very
small for lower excitation. Considering a submicron absorp-
tion length at 406.5 nm in Cu2O, however, it is remarkable
that measurable THG signals are observed. Since fundamen-
tal depletion due to TPA is negligible, the THG field intensity
E3� as a function of Z is given by26

E3��Z� =
i3�

2nc
��3�E3�Z�J3��
kd� , �6�

where n is the index of refraction for Cu2O, c is the speed of
light, E�Z�= �I0�Z� /2nc�1/2, and J3��
kd� is the phase-
matching factor. The dashed traces in Fig. 3�a� are the pre-
dicted THG photon counting ��	�2�Z��E3��Z��2� properly
scaled to match the overall data, simply assuming phase
matching �J3�=d� and using I0�Z� in Eq. �2�. While this
simple model basically corresponds to a I3 fit, the observed
3� Z-scan data reveal a different power dependence, and
therefore, are not well explained by these fits. In order to

FIG. 3. �Color online� �a� 3� Z-scan traces for 79.5, 122, and
226 �J /pulse. The dashed traces are explained in the text. The
inset shows the THG spectrum for 226 �J /pulse. �b� THG intensity
obtained from 3� Z-scan as a function of the input intensity, super-
imposed by an empirical fit.

FIG. 4. �Color online� �a� Time-averaged polariton density as a
function of Z, superimposed by the models with A �solid traces� and
without A �dashed traces�. �b� Polariton density as a function of the
input intensity, fit by our Auger model. Calculated polariton disper-
sion for �c� three-dimensional bulk and �d� 10-�m-thick cavity
modes in Cu2O for a �110� direction.
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check the THG power dependence, we plot the correspond-
ing THG intensity �colored dots� ���E3��Z��2� in Fig. 3�b� as
a function of the input intensity converted from Z using Eq.
�2�. The red line is an empirical fit to the data with I1.8. We
believe that this rather unusual power dependence stems
from complicated processes involving �i� strong absorption
of THG beam that crucially affects phase coherence between
the fundamental and THG lights inside Cu2O and/or �ii� pos-
sible contribution due to the generation of higher harmonics.
Regardless of detailed THG mechanism, we found that high-
density polariton generation is more affected by an Auger-
type process rather than THG.

We plot the time-averaged polariton density n�Z�
=N�Z� /	�2�Z�d �colored dots� in Fig. 4�a� using N�Z� in
Fig. 2�a�. In our excitation range, the polariton penetration
depth is limited by the sample thickness of d=100 �m,
which is smaller than the two-photon absorption length
��I�−1. The corresponding areal densities N�Z� /	�2�Z� are
also plotted in Fig. 4�a�. Despite considerable decrease in
N�Z� around Z=0 in Fig. 2�a�, it is important to note that the
maximum density still locates at the focus. While the solid
traces are our Auger model, the dashed traces correspond to
the predicted n�Z� assuming A=0, which clearly demon-
strates the critical role of the Auger-type effect. The colored
dots in Fig. 4�b� correspond to the polariton density as a
function of the input intensity, obtained using the same
method in Fig. 3�b�, superimposed by our model �red curve�.
It shows that the experimental polariton density strongly
saturate s around 3�1016 cm−3 under high excitation levels.
This is more than ten times higher than the maximum ther-

mal exciton density ��1015 cm−3�,27 basically due to the
suppressed A value by the same amount.

Although the polariton areal densities we have observed
in Cu2O are much higher than the critical BEC density
��109 cm−2� in the 2D cavity-polariton structures,4–6 BEC
is not expected to arise in practice, since the absence of a
local minimum precludes condensation �see Fig. 4�c��; of
course such minima have been engineered into the polariton
dispersion curves of the microcavities. This limitation might
be circumvented by depositing partially transmitting mirrors
on opposing sides of a flat platelet of Cu2O, thereby forming
a Fabry-Perot cavity. Figure 4�d� plots the n=84 cavity-
photon mode for a 10-�m-thick Cu2O platelet that form a
Fabry-Perot cavity �blue dashed curve� sitting just above the
bare exciton mode �red dashed curve�.28 �Matching of the
mode frequency with the polariton frequency can be
achieved by adjusting the propagation direction relative to
the plane normal.� Then, the lower polariton branch �red
solid curve� would develop a local minimum via quadrupole
coupling associated with a very small effective mass
��10−5me� in which long-lived polaritons can condense.

In conclusion, various nonlinear optical processes have
been characterized at the two-photon polariton resonance in
Cu2O using Z-scan. The measured polariton density appears
to be high enough for long-lived polariton BEC if cavity
confinement is realized in a thin Cu2O crystal.
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